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Abstract

A boundary element numerical scheme is developed to solve the problem of electrode shape change in an
electrochemical process involving convection, di�usion and migration. Particular attention is paid to the role of
each mechanism in determining the pattern of deposition. A uniform B-spline function is employed to de®ne the
shape of the electrode at each time step. An adaptive scheme is developed to generate the internal cells required in
the BEM formulation to deal with the non-constant convection and nonlinear terms of the problem. Several tests
are carried out to assess the proposed method.

1. Introduction

Uniform electrodeposition of coatings is generally
achieved when the current density is evenly distributed
over the electrode surface. A major problem in practical
electrochemical processes is the simultaneous e�ects of
many complex interacting phenomena. In their most
general form, the equations describing mass and charge
transport in electrochemical systems are complicated
because the ¯ow itself is in¯uenced by mechanical and
electrical forces of all components. In many practical
cases the solution contains a large amount of solvent,
which does not contribute to the reactions. In such
condition it can be assumed that the ¯uid ¯ow is
not in¯uenced by the motion of the charged species
(dilute solution model), consequently the ¯uid motion
can be obtained independently of the electrochemical

process, and the governing equations describing the
combined mass and charge transport of reacting species
can then be solved. Yet, when mass transport can be
neglected, the equations describing the current density
distribution reduce to a Laplace equation (di�usion
model); in this condition, the variation of ion concen-
trations is neglected.
There are several reliable numerical schemes in the

literature for the solution of the Laplace equation. Not
surprisingly, there are a substantial number of publica-
tions on the numerical simulation of current distribution
problems described by the di�usion model. However, it
is known that mass transfer of reacting species has to be
considered in several practical cases (consider [1, 2])
where the potential model fails. Numerical solution of
the dilute solution model based upon classical domain
formulations such as orthogonal functions, ®nite ele-
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ments, di�erences and volumes have been successfully
applied [3±6], but only few of these works consider
multiple ions solutions [4]. Recently, Qui et al. [7, 8]
developed a highly accurate boundary element scheme
for solving two-dimensional electrochemical problems
involving di�usion, convection and migration of several
ions in a dilute solution, without taking electrodeposi-
tion into consideration.
Due to the boundary nature of the approach, the

boundary elements method (BEM) is in principle ideal
to simulate moving boundary problems, as is the case of
the electrodeposition process. The main objective of the
present work is to extend our previous BEM formula-
tion [7] to solve problems of electrode shape change
involving the e�ects of di�usion, convection and migra-
tion. The added di�culties of the present work lie on the
moving boundary nature of the problem due to the
deposition process. For more details about the accuracy
of the proposed numerical scheme to simulate current
density distributions controlled by di�usion, convection
and migration [8], where comparisons with analytical
solutions, other numerical schemes and experiments are
reported.
There is a considerable number of papers in the

literature on the numerical solution of electrodeposition
problems (e.g., [9±14]), most of them in terms of the
potential theory. Amongst there, the following are
worth of special attention: Deconinck and collaborators
[10±12] simulated the electrode shape change in electro-
deposition process by employing a di�usion model, with
special attention paid to the electrode variation in the
vicinity of the adjacent insulator where a singularity is
expected to occur. They pointed out that the angle of
incidence between an electrode and an adjacent insula-
tor becomes a right angle as the evolution progresses;
this observation has been con®rmed by several experi-
ments. More recently, Huang and Hibbert [15] devel-
oped a one-dimensional model for the simulation of
electrode-position including di�usion, convection and
constant migration ®eld, and Huang and Hibbert [16]
presented a probability approach based upon a modi®ed
di�usion limited aggregation model to predict the
pattern formation of electrodeposition process in a
two-dimensional cell with constant ¯uid velocity and
electrical ®elds. The authors of [15, 16] assumed that the
charged layer is very narrow and the cell is quasi-
neutral, so the electrical ®eld gradient can be ignored.
Although several researchers have published results

on electrode shape changes, simulations of the changing
current distribution and resulting electrodeposition for
the problems involving di�usion, convection and mi-
gration have hardly appeared.
In our numerical examples, particular attention will

be paid to the role of each of these mechanisms, that is,
di�usion, convection and migration, in determining the
®nal shape of the deposition patterns at the cathode. In
the literature, there is no general classi®cation for the
description of the deposition features, which may
develop in an electrodeposition process. Even more

di�cult is the de®nition of conditions which may lead to
the various types of deposition forms. Calusaru [17, 18]
and Atanasiu and Calusaru [19] showed that there are at
least three ranges of overpotential, which can be
determined from studies of the deposited structure: (i)
compact metal, (ii) rough deposition, and (iii) true
powder. It is also known that all metals which can be
electrodeposited exhibit a tendency to appear in the
form of powder at current densities larger than a certain
critical value (for more details see Pavlovic et al. [20]).

2. Governing equations

For a dilute solution in a unionised solvent at constant
pressure and temperature, the vector ¯ux density of each
ionic species k is given by [21]

Nk � ÿzkFukckrU ÿ Dkrck � vck �1�

where ck is the molar concentration of ion k, rck the
concentration gradient, Dk the di�usion coe�cient, uk

the mechanical mobility, zk the charge number, rU the
electrical ®eld, v the velocity of the solvent, and F the
Faraday constant (F � 96 487 C molÿ1).
The three terms on the right-hand side of the equation

describe the e�ects of migration, di�usion and convec-
tion, respectively. The total charge per mole ion is its
charge number multiplied by the constant zkF , and the
current density is hence the ¯ux of the ion multiplied by
zkF . For all species, we have

J � F
X

k

zkNk �2�

The material balance for a minor component in an
electrolyte can be expressed by

@ck

@t
� ÿr �Nk � Rk �3�

with @ck=@t being the accumulation of species k, r �Nk

the di�erence between the input and the output andRk the
production rate of ion k due to homogeneous chemical
reaction at the bulk of the solution. In electrochemical
systems, reactions are frequently restricted to electrode
surfaces, in which case Rk can be considered as zero.
Equations 1 and 3 are equivalent to the following

system of equations:

@ck

@t
� v � rck � zkFr � �ukckrU� � r � �Dkrck� � Rk

�4�

r � ÿF 2
X

k

z2kukckrU ÿ F
X

k

zkDkrck

( )
� 0 �5�

where Equation 5 was obtained by considering con-
servation of charge and the condition of electroneu-
trality
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X
k

zkck � 0 �6�

The above system of equations describes the transport
of mass and charge in dilute electrochemical solutions.
Even in the simple case of an in®nite dilute solution, a
complex set of coupled partial di�erential equations has
to be dealt with. With prescribed convective velocity,
Equations 4 to 6 can be solved to get the unknowns U
and ck.

3. Numerical formulation

3.1. Mathematical model

For two-dimensional steady-state conditions, and as-
suming that the coe�cients uk, zk and Dk are all constant,
Equations 4 and 5 can be expressed in the form:

Dkr2ck ÿ vx ÿ Fzkuk
@

@x
U

� �
@

@x
ck

ÿ vy ÿ Fzkuk
@

@y
U

� �
@

@y
ck � ÿ Fzkukr2U

ÿ �
ck �7�

and

X
k

z2kukck

 !
r2U �

X
k

z2kuk
@

@x
ck

 !
@

@x
U

�
X

k

z2kuk
@

@y
ck

 !
@

@y
U � ÿ 1

F

X
k

zkDkr2ck �8�

In the present work the above system of equations can
be used as the governing equations of the problem under
consideration. This is due to the quasi-static character
of the phenomena, consequence of the di�erence
between the characteristic time scale of the chemical
reactions, the deposition and ¯ow processes.
For the purpose of deriving the numerical algorithm

employing the boundary element method, the velocity
®eld is divided into an average and a perturbation, and
the fundamental solution of the di�usion±convection
equation for constant velocity is applied. The perturba-
tion velocity and migration terms are included through a
domain discretization. After dividing the velocity ®eld
into average and perturbation, Equation 7 is rewritten in
the form

Dkr2ck ÿ �vx
@

@x
ck ÿ �vy

@

@y
ck

� Pcxk

@

@x
ck � Pcyk

@

@y
ck � Cxyk

ck �9�

with

Pcxk �x; y� � Px ÿ Kk
@

@x
U

Pcyk
�x; y� � Py ÿ Kk

@

@y
U

Cxyk
�x; y� � ÿKkr2U

Kk � Fzkuk

Similarly, Equation 8 is rewritten in the form:

r2U ÿ �vux
@

@x
U ÿ �vuy

@

@y
U � Pux

@

@x
U � Puy

@

@y
U �Uxy

�10�

with

vux�x; y� � ÿ
X

k

z2kuk
@

@x
ck

 !, X
k

z2kukck

 !

vuy�x; y� � ÿ
X

k

z2kuk
@

@y
ck

 !, X
k

z2kukck

 !

Uxy�x; y� � ÿ
X

k

zkDkr2ck

 !,
F
X

k

z2kukck

 !

The fundamental solution of the two-dimensional
steady-state di�usion±convection equation with con-
stant velocity ®eld

Dr2cÿ �vx
@c
@x
ÿ �vy

@c
@y
� 0

is of the form

c��n; v� � 1

2pD
eÿ��v�r�=2DK0

j�vjr
2

� �
By employing the above fundamental solution and
Green's second identity, when the source point is inside
the domain, Equation 9 can be transformed into the
following integral representational formula:

ck�n� ÿ Dk

Z
C

c�k�n; v�q�v�dC�v�

� Dk

Z
C

q�k�n; v�ck�v�dC�v�

�
Z
C

c�k�n; v��vn�v�ck�v�dC�v� � ÿ
Z
X

bkc�k�n; v�dX�v�

�11�

in which

bk � Pcxk �@ck=@x� � Pcyk �@ck=@y� � Cxyk ck

For Equation 10, the integral representational formula
has a similar form. A BEM algorithm to solve the above
system of integral equations has been described in detail
in our previous papers [7, 8]. With the above numerical
scheme, we are now able to simulate the electrode shape
change in the electrodeposition process by employing
Faraday's law, in which the relationship between the
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electrode shape change and the local current density is
described.

3.2. Electrode shape change

Since electrodeposition is a Faraday's charge-transfer
reaction, the rate of deposition depends upon the
current density. In the absence of any interfering
reaction, the relationship between the deposition rate
and the current density is given by Faraday's law in its
local form [21]:

dh
dt
�
X

l

Ml

zlF ql
Jl � n �12�

with dh=dt being the thickness variation at a point i
along the normal direction, Jl the partial current density
of reduction of ion l, Ml the molecular weight, and ql
the speci®c weight. At each moment, the electric
potential and the concentration of each ion have to
satisfy Equations 4±6 including the boundary condi-
tions, while the boundary contour at the electrodes
changes with time. In some practical cases there can be a
di�erence between the value predicted by Equation 12,
and the observed measurements of reaction processes.
This is due to the possible presence of other reactions
than metal deposition of removal, as can be gas
evolution, that will be neglected in the present work.
The simplest way to solve the above evolution

equation is to replace the di�erential by a forward ®nite
di�erence, hence Equation 12 becomes

hn�1
i � hn

i � Dt
X

l

klJ
i
l � ni

 !
�13�

k � Ml

zlF ql

with h0
i � 0. This is the classical Euler method, which is

in fact the integration of the ®rst order Taylor expansion
of the real solution. At each time step n, the thickness
variation is obtained from the above equation, with the
current density at each nodal point obtained by solving
the governing equations for the electrochemical process.
The corresponding coordinates of the new electrode
shape, at time step n� 1, are

xn�1
i � xn

i � nxhn�1
i �14�

yn�1
i � yn

i � nyhn�1
i �15�

where nx, ny are x and y components of the unit normal
vector.
At the beginning and the end points of the electrode,

the movement is determined by the internal angle
between the electrode and the insulator. When the angle
is larger than p=2, the new boundary is no longer closed
in the next time step. This is physically incorrect and not

logical. Obtuse angles at the interface of the electrode±
insulator attract more current, hence the angle will
become larger and larger as time goes on. This condition
is not realistic, so no movement at these points is
considered when the angle is large than p=2 (for more
details about this condition, see Deconinck [12]). There-
fore, movement is considered only when the internal
angle between electrode and insulating boundary is
equal to or less than p=2.
The new electrode pro®le at the ®rst time step is

closed by introducing a few elements between the new
and old ends of the electrode (here two). At other time
steps, the movement of the electrode is computed at
every node by Equations 14 and 15. This algorithm
was suggested by Deconinck [12], where a detailed
description of how to deal with di�erent cases of
extremes points is reported.
The curve de®ning the shape of the electrode at each

time step is obtained by using a uniform B-spline
function. Four control points are used for each segment
of a cubic B-spline and a blending function multiplies
each control point coordinate accordingly [22],

Pi�x� � E0�x�Viÿ1 � E1�x�Vi

� E2�x�Vi�1 � E3�x�Vi�2 �16�

where Pi are the coordinates of a general point, Vi are the
coordinates of the control points, Ei the blending
functions, and x a parameter varying from 0 to 1.
The four blending functions are given in the form

E0�x� � ÿx3=6� x2=2ÿ x=2� 1=6 �17a�

E1�x� � x3=2ÿ x2 � 2=3 �17b�

E2�x� � ÿx3=2� x2=2� x=2� 1=6 �17c�

E3�x� � x3=6 �17d�

The number of control points is two in excess of the
number of interpolating points. The Yamaguchi condi-
tion is used to de®ne an open curve (see [22] for more
information), where V0 � V1 and Vn�1 � Vn.
Applying Equation 16 to the interpolating points,

we obtain the following linear system of algebraic
equations:

EV � P �18�

where E is the matrix of blending functions, V is a vector
of control points and P the vector of interpolating
points. The problem can be solved by inverting E.
The above system satis®es the Gauss±Seidel conver-

gence condition and is more e�ciently solved in an
iterative way.
To compute each span we need four blending func-

tions multiplied by four control points, but to represent
the knots at the extreme of each span, one of the
blending functions is zero and, consequently, we have
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1

6
Viÿ1 � 2

3
Vi � 1

6
Vi�1 � Pi �i � 1; 2; . . . ; n� �19�

By applying the Gauss±Seidel iterative procedure, one
®nds

V k
i � Pi � 1

2
Pi ÿ 1

2
V k

iÿ1 � V kÿ1
i�1

ÿ �� �
�20�

where k denotes the kth iteration. The di�erence vector
dk

i between V k
i and V kÿ1

i may be stated as

dk
i � Pi ÿ V kÿ1

i � 1

2
Pi ÿ 1

2
V k

iÿ1 � V kÿ1
i�1

ÿ �� �
�21�

and the iterative process continues until the di�erence
vector be less or equal to a speci®ed convergence
tolerance. At the beginning of the process Yamaguchi
suggested to use V kÿ1

0 instead of V k
0 when i � 1 only.

The boundary elements on the curve are uniformly
distributed in respect to the curve length, and their
position are obtained by the use of the above B-spline
functions.
In nearly all our computations the interface, after a

su�ciently long time, developed a saw-toothed appear-
ance in which the computed position of the interface
points laid alternately above and below a smooth curve.
This is due to the use of quadratic elements in our BEM
scheme, which are known to improve the accuracy with
respect to lower order elements, but in a moving
boundary problem a zig-zag instability is induced as a
result of the di�erence in accuracy between the predicted
values at the end-points and those at the central node of
the elements.
This stability problem was e�ectively controlled

following the procedure described by Longuet±Higgins
and Cokelet [23] to mitigate the saw-toothed appear-
ance on the BEM results of the time evolution of
space-periodic irrotational breaking waves. Longuet±
Higgins and Cokelet's approach has been used suc-
cessfully before in other BEM formulations of mov-
ing boundary problems [24]. The smoothing algorithm
is as follows: A function f �x� de®ned at points
xj �j � 1; 2; . . .�, and in which alternate points lie on a
smooth curve, can be locally approximated by two
polynomials, say

p�x� � �a0 � a1x� a2x2 � � � � � anxn�
� �ÿ1�j�b0 � b1x� b2x2 � � � � � bnxn� �22�

The ®rst bracket represents a smooth mean curve, and
the remainder a quantity which oscillates around the
mean curve. The coe�cients a0; a1; . . . and b0; b1; . . . may
be chosen uniquely so that p�x� � f �x� exactly at
�2n� 1� consecutive points xj, say �jÿ n� to �j� n�
inclusive. As a smoothed function we can then take the
even part:

p�x� � �a0 � a1x� a2x2 � � � � � anxn� �23�

In the case n � 2 this leads to the ®ve-point smoothing
formula

fj � 1

16
�ÿfjÿ2 � 4fjÿ1 � 4fj�1 ÿ fj�2� �24�

As the boundary shape keeps changing, the distribution
of the cells in the domain also needs to be regenerated at
each time step. Since the boundary shape is rarely
regular, the cells cannot usually be distributed uniform-
ly. In theory, the more irregular the boundary is, the
more cells are needed to get accurate results, but too
many cells could be very expensive in practical compu-
tations. To obtain the required accuracy with a mini-
mum number of cells, an adaptive scheme was
developed to automatically generate the domain mesh.

4. Numerical example

To assess the numerical approach described here,
simulations are carried out on a parallel plate reactor
with metal dissolution at the anode, located at the
bottom of the cell, and metal deposition at the cathode,
at the top of the cell (a sketch of the cell is shown in
Figure 1). Electrodepositions from an electrolyte solu-
tion consisting of three ions are analyzed, in which only
one ion is considered as reactive, c1.
The current density at the two electrodes is related to

electrochemical kinetics by the Butler±Volmer equation.
At the anode we have:

Jna � i�a
c1
c1b

� �0:67

exp
a1nF
RT
�Va ÿ U�

� ��
ÿ exp

ÿa2nF
RT

�Va ÿ U�
� ��

�25�

in which a is the transfer coe�cient, and at the cathode

Jnc � ÿi�c
c1
c1b

� �0:67

exp
a1nF
RT
�Vc ÿ U�

� ��
ÿ exp

ÿa2nF
RT

�Vc ÿ U�
� ��

�26�

where the ®rst exponential term represents the rate of
the anodic process, and the second term that of the

Fig. 1. Sketch of the reactor cell tested.
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cathodic process. These are governed by activation
energies, which depend on the surface overpotentials.
The values of the ion parameters used as input in the

numerical computations are given in Table 1, where c0k,
with k � 1; 2; 3, are the incoming ion concentrations in
the channel given as boundary conditions at the channel
inlet, that is, x � 0. Table 2 gives the value of the other
parameters used in our numerical examples.
The mobility constants uk are calculated from the

di�usion constants by the Nernst±Einstein formula

Dk � RTuk �27�

The following no-¯ux conditions were considered at the
channel walls, that is, at y � 0 and y � 1, when
0 � x � 4 and 6 � x � 12

@c1
@n
� 0;

@c2
@n
� 0;

@c3
@n
� 0;

@U
@n
� 0 �28�

and at the channel outlet, at x � 12, we impose the
following uniform conditions

@c1
@n
� 0;

@c2
@n
� 0;

@c3
@n
� 0;

@U
@n
� 0 �29�

At the cathode, that is, at y � 1, when 4 � x � 6, the
following boundary conditions were considered:

@c2
@n
� ÿ38:6 c2

@U
@n

�30�

@c3
@n
� 77:2 c3

@U
@n

�31�

c1 � c3 ÿ 0:5 c2 �32�

@U
@n
� 1

38:6�2c1 � 0:5c2 � 2c3�
� 0:24422

1:3896

� �
c0:671 vexp �33�

with

vexp� exp�83:376�VcÿU��ÿ exp��ÿ30:108��VcÿU��

Equations 30 and 31 are obtained from the zero current
density condition for nonreacting ions, Equation 32
from the condition of electroneutrality, and Equation 33
from the electrochemical kinetic relation for the reactive
ion, Equation 26, where

Jnc � ÿF 2z21u1c1
@U
@n
ÿ D1

@c1
@n

�34�

The normal derivative of c1 was expressed in terms of
the normal derivative of the electrical potential by using
the derivative of the electroneutrality relation, and
Expressions 30 and 31. Similarly at the anode, that is,
at y � 0 when 4 � x � 6, we have

@c2
@n
� ÿ38:6 c2

@U
@n

�35�

@c3
@n
� 77:2 c3

@U
@n

�36�

c1 � c3 ÿ 0:5 c2 �37�

@U
@n
� 1

38:6�2c1 � 0:5c2 � 2c3�
0:24422

1:3896

� �
c0:671 vexp

�38�

with

vexp � exp�83:376�Va ÿU�� ÿ exp��ÿ30:108��Va ÿU��

In the above equations the normal vector is de®ned
outwardly to the channel.
Figure 2 shows the evolution of the cathode growth

when the ¯uid inside the channel is at rest. These results
correspond to the solution when the smoothing algo-
rithm was used, in Figure 3 we present the results
obtained without the smoothing algorithm. The corre-
sponding current density distribution at the cathode at
the beginning of the process is given in Figure 4. It is
important to observe from Figure 2, that the growth at
the singular points (beginning and end of the electrode)
satis®es the experimental observation that the angle
between the electrode and the insulator at successive
time steps is a right angle (for more details about this
behaviour see Deconinck [12]). Besides, due to the

Table 1. Ion parameter values used in the numerical examples

k c0k � 103=mol cmÿ3 Dk � 105=cm2 sÿ1 zk

1 0.50 72.000 2

2 0.30 9.312 1

3 0.65 10.650 )1

Table 2. Values of other parameters used in the numerical examples

i�a � i�c � 103

=Acmÿ2
n c1b � 104

=mol cmÿ3
R
=Jmolÿ1 Kÿ1

T=C a1 a2

1.5 2 1 8.314 25° 1.08 0.39

Fig. 2. Time evolution of the cathode growth in the case when the ¯uid

inside the reactor cell is at rest, solution obtained with the smoothing

algorithm.
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absence of convective forces the deposition is completely
symmetric.
Figures 5, 6 and 7 show how the internal cell

distribution is modi®ed as the deposition progresses,
for the 2nd, 30th and the 60th time steps of the
evolution, respectively. In our BEM simulation, the
channel contour was divided into 38 linear boundary
elements, and the shape of the internal cells was always
triangular with linear interpolation. The above numer-
ical results were allowed to grow without any physical
limitation to fully appreciate the evolution of the
phenomena. In practical cases when the growth material
is too close to the anode an instability occurs breaking
down the electrochemical process.
By comparing the present results with those obtained

by Deconinck [12] using the potential model, it can be
observed that when migration e�ects are considered, a
sharper edge at the singular points i.e., the beginning
and the end of the cathode, is obtained. Similar
di�erences were observed by Deconinck [10] in some
of his experimental results, which he attributed to the
mass transport e�ect (migration), that has stronger
in¯uences at the singular points due to higher concen-

Fig. 3. Time evolution of the cathode growth in the case when the ¯uid

inside the reactor cell is at rest, solution obtained without the

smoothing algorithm.

Fig. 4. Current density distribution at the cathode at the beginning of

the electrodeposition process in the case when the ¯uid inside the

reactor cell is at rest.

Fig. 5. Internal BEM cell distribution of the 2nd time step in the case

when the ¯uid inside the reactor cell is at rest.

Fig. 6. Internal BEM cell distribution at the 30th time step in the case

when the ¯uid inside the reactor cell is at rest.

Fig. 7. Internal cell distribution at the 60th time step in the case when

the ¯uid inside the reactor cell is at rest.
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tration gradients there. The migration e�ect was not
considered in his simulations.
Besides the above di�erence between the results

obtained with a potential model and the ones presented
here, it is also expected that the present approach will
predict nonsymmetric depositions when ¯uid convection
is present, as shown in the next examples. In a potential
model the current distribution has to be independent
of the ¯ow rate, since convection is large enough to
eliminate concentration variations, and therefore the
current distribution predicted by this type of model
and the concurrent electrodeposition have to be sym-
metric.
Figures 8, 10 and 12 show the results obtained in the

case of an initial laminar parabolic channel ¯ow, with an
initial cross section PeÂ clet number (Pek � vmaxh=Dk),
Pe1 � 26:85, Pe2 � 347:20 and Pe3 � 2347, for di�erent
values of the applied voltage. When the magnitude of
the applied electrical voltage is low (30 mV), the
resulting deposition pro®le is practically uniform having
two small humps, at the beginning and at the end of the
cathode, of almost equal sizes (Figure 8). In Figure 9, we
show the corresponding current density distribution at
the cathode at the beginning of the process. By
increasing the magnitude of the applied electrical

voltage to 45 mV, while keeping the same convective
¯ow ®eld, it is found that the deposition surface shows a
small slope towards the upstream direction of the
channel, and the hump at the beginning becomes larger
than the one at the end (Figure 10). In Figure 11 we
present the corresponding current density distribution at
the beginning of the process, for this cell conditions.
When the applied voltage was increased to such a

value that the limiting current density condition was
reached, the deposition reduces practically to a single
hump at the beginning of the cathode (Figure 12). In this
condition it is possible to neglect the contribution of
ionic migration to the ¯ux of the reacting ions leading to
a pure convective di�usion phenomena. Frequently, due
to the small value of the di�usion coe�cient, the
concentrations di�er signi®cantly from the bulk values
only in a thin layer near the surface of the electrode,
where the parabolic velocity pro®le can be approximat-
ed by a linear function. For this condition LeÂ veque [25]
found an approximate analytical solution, in which the
current density decreases with the inverse cube root of
the distance downstream of the cathode. In Figure 13,
we present the comparison of our initial current density
with that obtained with LeÂ veque's formula for the ¯ow
conditions of this last example.

Fig. 8. Time evolution of the cathode growth for the case of

convective ¯ow and small applied voltage.

Fig. 9. Current density distribution at the cathode at the beginning of

the electrodeposition process for the case of convective ¯ow and small

applied voltage.

Fig. 10. Time evolution of the cathode growth for the case of

convective ¯ow and moderate applied voltage.

Fig. 11. Current density distribution at the cathode at the beginning of

the electrodeposition process for the case of convective ¯ow and

moderate applied voltage.
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It is important to observe that, for simplicity, we have
assumed that the velocity pro®le remains parabolic
during the deposition process. But as the deposition
progresses, the velocity pro®le is modi®ed at each cross
section according to the conservation of mass. There-
fore, our solutions are expected to hold at the beginning
of the deposition process, when ¯uid ¯ow separation is
negligible.
Finally, it is interesting to observe the similarity

between the di�erent electrode shapes obtained in this
work, and the shapes of the bed forms found at the
bottom of alluvial channels produced by the motion of
the sediments, which are carried out by the main ¯uid.
A general classi®cation of those bed forms is: ripples,
dunes, wavy bed, transition ¯at bed and antidunes.
These bed features will appear according to di�erent
¯ow intensities and sediment characteristics (for more
details see Raudkivi [26]). The present numerical results
show similar variations on the electrodeposition pat-
terns when the ratio between the intensity of the
convective ¯ow and the applied electrical voltage
changes. A major di�erence between these two phe-
nomena is that in the sediment transport process, the
decantation force (the gravitational force) is one-dimen-
sional, and is una�ected by the other ®elds. However, in
the present electrodeposition process the attracting
force, due to the electrical potential, is two-dimensional
and in¯uenced by the presence of the other ®elds.

Conclusion

By changing the relative magnitude of the acting forces
in an electrochemical decomposition process, the corre-
sponding changes on the deposition patterns have been
numerically observed. These go from complete symmet-
ric features, when the ¯uid is at rest, to an almost single
hump deposition at the beginning of the cathode when
the limiting current condition is reached. These patterns
can be found in electrochemical experiments and they
appear according to the di�erences in magnitude be-
tween the convective term and the attractive force due to
the chemical reaction at the electrode. An almost
uniform deposition is observed when convection is
considered and a small electrical voltage is applied,
and unsymmetric deposition is found when the supply of
the reaction solution is not enough to ensure symmetric
growth for both extremes of the electrode.
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